23 research outputs found

    Using simulation to quantify the performance of automotive perception systems

    Full text link
    The design and evaluation of complex systems can benefit from a software simulation - sometimes called a digital twin. The simulation can be used to characterize system performance or to test its performance under conditions that are difficult to measure (e.g., nighttime for automotive perception systems). We describe the image system simulation software tools that we use to evaluate the performance of image systems for object (automobile) detection. We describe experiments with 13 different cameras with a variety of optics and pixel sizes. To measure the impact of camera spatial resolution, we designed a collection of driving scenes that had cars at many different distances. We quantified system performance by measuring average precision and we report a trend relating system resolution and object detection performance. We also quantified the large performance degradation under nighttime conditions, compared to daytime, for all cameras and a COCO pre-trained network

    FIR-based Future Trajectory Prediction in Nighttime Autonomous Driving

    Full text link
    The performance of the current collision avoidance systems in Autonomous Vehicles (AV) and Advanced Driver Assistance Systems (ADAS) can be drastically affected by low light and adverse weather conditions. Collisions with large animals such as deer in low light cause significant cost and damage every year. In this paper, we propose the first AI-based method for future trajectory prediction of large animals and mitigating the risk of collision with them in low light. In order to minimize false collision warnings, in our multi-step framework, first, the large animal is accurately detected and a preliminary risk level is predicted for it and low-risk animals are discarded. In the next stage, a multi-stream CONV-LSTM-based encoder-decoder framework is designed to predict the future trajectory of the potentially high-risk animals. The proposed model uses camera motion prediction as well as the local and global context of the scene to generate accurate predictions. Furthermore, this paper introduces a new dataset of FIR videos for large animal detection and risk estimation in real nighttime driving scenarios. Our experiments show promising results of the proposed framework in adverse conditions. Our code is available online.Comment: Conference: IEEE Intelligent Vehicles 2023 (IEEE IV 2023

    Robust Multiview Multimodal Driver Monitoring System Using Masked Multi-Head Self-Attention

    Full text link
    Driver Monitoring Systems (DMSs) are crucial for safe hand-over actions in Level-2+ self-driving vehicles. State-of-the-art DMSs leverage multiple sensors mounted at different locations to monitor the driver and the vehicle's interior scene and employ decision-level fusion to integrate these heterogenous data. However, this fusion method may not fully utilize the complementarity of different data sources and may overlook their relative importance. To address these limitations, we propose a novel multiview multimodal driver monitoring system based on feature-level fusion through multi-head self-attention (MHSA). We demonstrate its effectiveness by comparing it against four alternative fusion strategies (Sum, Conv, SE, and AFF). We also present a novel GPU-friendly supervised contrastive learning framework SuMoCo to learn better representations. Furthermore, We fine-grained the test split of the DAD dataset to enable the multi-class recognition of drivers' activities. Experiments on this enhanced database demonstrate that 1) the proposed MHSA-based fusion method (AUC-ROC: 97.0\%) outperforms all baselines and previous approaches, and 2) training MHSA with patch masking can improve its robustness against modality/view collapses. The code and annotations are publicly available.Comment: 9 pages (1 for reference); accepted by the 6th Multimodal Learning and Applications Workshop (MULA) at CVPR 202

    Targeted collapse regularized autoencoder for anomaly detection: black hole at the center

    Full text link
    Autoencoders have been extensively used in the development of recent anomaly detection techniques. The premise of their application is based on the notion that after training the autoencoder on normal training data, anomalous inputs will exhibit a significant reconstruction error. Consequently, this enables a clear differentiation between normal and anomalous samples. In practice, however, it is observed that autoencoders can generalize beyond the normal class and achieve a small reconstruction error on some of the anomalous samples. To improve the performance, various techniques propose additional components and more sophisticated training procedures. In this work, we propose a remarkably straightforward alternative: instead of adding neural network components, involved computations, and cumbersome training, we complement the reconstruction loss with a computationally light term that regulates the norm of representations in the latent space. The simplicity of our approach minimizes the requirement for hyperparameter tuning and customization for new applications which, paired with its permissive data modality constraint, enhances the potential for successful adoption across a broad range of applications. We test the method on various visual and tabular benchmarks and demonstrate that the technique matches and frequently outperforms alternatives. We also provide a theoretical analysis and numerical simulations that help demonstrate the underlying process that unfolds during training and how it can help with anomaly detection. This mitigates the black-box nature of autoencoder-based anomaly detection algorithms and offers an avenue for further investigation of advantages, fail cases, and potential new directions.Comment: 16 pages, 4 figures, 4 table

    Effect of BMI on maximum oxygen uptake of high risk individuals in a population of eastern Uttar Pradesh

    Get PDF
    Background: Herein, we report the effect of body mass index (BMI) on respiratory fitness by measuring maximum oxygen uptake after a short-term aerobic exercise. 20-40 years old healthy male individuals were divided into three categories according to their BMI and asked to perform aerobic exercise on a treadmill. Maximum oxygen uptake (VO2max) immediately after the exercise was recorded and statistically analyzed. Materials and methods: Thirty individuals of age within the range of 20-40 years were first medically examined to be certain that they did not have any cardiorespiratory complications and their BMI was calculated. Based on their BMI, they were classified into three—normal, overweight and obese groups and subjected to a treadmill exercise as per Bruce Protocol. Recorded data were analyzed and student t-test was performed to test significance of the data. Result: It was observed that the VO2max decreases as BMI increases. Conclusion:  This study establishes a correlation between maximum oxygen uptake and BMI of individuals that suggests that with increased BMI, VO2max decreases resulting into a decrease in respiratory fitness level. This trend was found to be consistent among all normal, overweight and obese group individuals. There are numerous reports on respiratory endurance where individuals were subjected to aerobic exercises over a long period of time. Here, we have studied the immediate effect of an aerobic exercise on the maximum oxygen uptake of normal and high risk individuals who were not subjected to long term exercises for respiratory endurance

    A Novel Two-level Causal Inference Framework for On-road Vehicle Quality Issues Diagnosis

    Full text link
    In the automotive industry, the full cycle of managing in-use vehicle quality issues can take weeks to investigate. The process involves isolating root causes, defining and implementing appropriate treatments, and refining treatments if needed. The main pain-point is the lack of a systematic method to identify causal relationships, evaluate treatment effectiveness, and direct the next actionable treatment if the current treatment was deemed ineffective. This paper will show how we leverage causal Machine Learning (ML) to speed up such processes. A real-word data set collected from on-road vehicles will be used to demonstrate the proposed framework. Open challenges for vehicle quality applications will also be discussed.Comment: Accepted by NeurIPS 2022 Workshop on Causal Machine Learning for Real-World Impact (CML4Impact 2022
    corecore